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Abstract: Safety performance functions (SPFs) are commonly used to correlate geometric, traffic, and environmental characteristics with
total crashes, and to identify hotspots that have excessive overall crash frequencies. However, different crash types are associated with differ-
ent vehicle maneuvers and therefore different risk factors. At signalized intersections, geometric design, signal control, traffic flow, and traffic
crash occurrences vary across different approaches of a single intersection. This study developed approach-level SPFs using a full Bayesian
method to assess the safety effects of specific risk factors for rear-end, left-turn, right-angle, and sideswipe crash types, and for total crashes.
Based on these approach-level SPFs, a systematic method that efficiently integrated the procedures of hotspot identification and counter-
measure development was proposed. The method can be used to identify high-risk intersection approaches with specific safety problems and
can serve as a useful complement to general hotspot analyses that use expected crash totals. It was found that some variables, including the
number of through lanes, median presence, and left-turn protection, could have contrary effects on the occurrence of certain crash types. The
proposed method can provide insights to aid in the development of countermeasures aimed at reducing certain crash types and an improved
ability to identify deficiencies related to geometric and traffic characteristics for each intersection approach. DOI: 10.1061/(ASCE)TE.1943-
5436.0000660. © 2014 American Society of Civil Engineers.

Author keywords: Signalized intersection; Approach level; Crash type model; Bayesian method; Hotspot identification; Countermeasure
development.

Introduction

The exploration of risk factors associated with signalized intersec-
tions is complicated by numerous potential conflicts and by the
many different intersection features, including geometric design,
traffic control, and traffic characteristics. Safety performance func-
tions (SPFs) are typically used to correlate intersection features with
total crashes and then to identify hotspots with excessive overall
crash frequencies. However, each crash type has its own conflicting
patterns and consequently is differentially associated with certain
risk factors. As a result, some intersections that do not have an ex-
cessive amount of total crashes should still be flagged as hazardous
because they have an overrepresentation of specific crash types.
Total crash models are less helpful in investigating risk factors re-
lated to particular crash types and in identifying high-risk intersec-
tions with specific safety problems. To more accurately estimate the
relationships of geometric, traffic, and environmental characteristics
to crash causes, it is necessary to develop SPFs based on specific

crash types. The greater explanatory power of these crash type mod-
els can then be used to develop more effective countermeasures
aimed at reducing those specific crash types that account for most
of the crash problem at signalized intersections.

It should be noted that at signalized intersections, geometric de-
sign, signal control, and traffic flow vary across the different ap-
proaches at a single intersection. Moreover, and at any given
intersection, crashes are usually not evenly distributed among ap-
proaches. It follows that SPFs, at the overall intersection level, may
obscure the real relationships between the crash antecedents and
outcomes. SPFs developed at the approach-level models can rem-
edy this shortcoming by identifying the specific deficiencies related
to geometric and traffic factors for each intersection approach.

The framework of intersection safety analysis proposed in this
study is illustrated below in Fig. 1. Initially, approach-level crash
type models for signalized intersections were developed, and risk
factors for particular crash types identified. Then, expectations of
various crash types were calculated for each intersection approach.
Next, if excessive crash totals or excessive crashes of certain types
were present, such hazardous approaches were flagged. At this
point, effective countermeasures that can address specific crash
problems for those approaches can be identified. The objective
of this study is to present a systematic method for intersection
safety analysis that focuses on improvements to hotspot identifica-
tion and countermeasure development based on approach-level
crash type models.

Literature Review

Crash Type Models

Most previous studies focus on the SPFs for overall crash
frequencies of intersections (Chin and Qudds 2003; Maher and
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Summersgill 1996), whereas studies specifically focusing on crash
type models are less common. In one such study, Hauer et al. (1988)
classified initial crashes into 15 types by vehicle maneuvers before
collisions andmodeled each type for different time periods (morning
peak, afternoon peak, and daily) using conflicting flows. Similar
research was conducted for signalized intersections in Ontario,
Canada, by Persaud and Nguyen (1998). Crash type models disag-
gregated by time period, crash severity, and environment class were
fitted using traffic flows. In those studies, traffic flow was the only
predictor included in each model. The safety effects of other inter-
section characteristics were not explored.

Relationships among geometric, traffic, and environmental fea-
tures and specific types of crashes were also investigated in several
other studies. Mitra et al. (2002) divided crashes occurring at four-
legged signalized intersections in Singapore into a head-to-side
type and a head-to-rear type. Geometric and traffic factors affecting
the two crash types were identified. In a study by Kim et al. (2006),
based on 837 crashes occurring on two-lane rural intersections in
the U.S. state of Georgia, SPFs for total, angle, head-on, rear-end,
sideswipe, and pedestrian-involved crashes were developed.
However, because of differences across intersection approaches,
modeling crash occurrences for the full intersection sample cannot
reveal the relationships between the crashes and their causes.

With most prior research focused on the association between
crash frequencies and overall intersection features, only a few SPFs
at the intersection approach level have been developed. Hall (1986)
built Poisson models for 14 crash types at the approach level
for 199 intersections in urban areas in Great Britain. Poch and
Mannering (1996) estimated approach-level negative binomial
models for three crash types: angle, rear-end, and turn crashes.
They investigated the relationships between approach-related

geometric and traffic features, and crash frequencies. Shankar et al.
(1995) developed negative binomial models for specific accident
types. Qin et al. (2004) developed zero-inflated Poisson models
for four different crash types. Nevertheless, these prior studies
did not account for correlations among approaches at the same in-
tersection. In a more recent study, Wang and Abdel-Aty (2007) de-
veloped right-angle crash models at the approach level using
generalized estimation equation (GEE) models to deal with the cor-
related approach data. In another study by Wang and Abdel-Aty
(2008), left-turn crashes were classified into nine patterns based
on vehicle maneuvers, and the crash frequencies of each pattern
were fitted at the approach level using GEE models.

Hotspot Identification in Terms of Crash Types

Heydecker and Wu (1991) proposed a proportional method to iden-
tify hotspots by considering overrepresentation of specific crash
types at similar sites. Crash occurrence was regarded as a sequence
of infinite and independent Bernoulli trials. A Bayesian posterior
beta-binomial probability distribution of the crash rate was used to
prioritize hazardous sites according to the probability that the ob-
served proportion of a crash type at a site was above a given critical
proportion. Lyon et al. (2007) compared the proportion method
and the widely accepted empirical Bayes method, and their results
showed the proportion method was a reasonable alternative when
SPFs were not available. Based on the same assumption of a
Bernoulli distribution for crash occurrence, Kononov (2002) used
direct diagnostics and pattern recognition methods for hotspot iden-
tification. Kim et al. (2006) screened out high-risk intersections for
each crash type using crash type models; however, the regression-
to-the-mean issue (Hauer 1980; Cheng and Washington 2005;
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Fig. 1. The intersection safety analysis framework
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Cheng and Washington 2008) was not taken into consideration in
these studies.

Risk Factor Analysis

Previous studies have evaluated the safety effects of intersection
risk factors on various crash types including rear-end (Hall
1986; Hauer et al. 1988; Kim et al. 2006; Mitra et al. 2002; Persaud
and Nguyen 1998; Poch and Mannering 1996; Roess et al. 2003;
Wang and Abdel-Aty 2006), left-turn (Hall 1986; Hauer et al. 1988;
Joshua and Saka 1992; McCoy et al. 1992; Persaud and Nguyen
1998; Poch and Mannering 1996; Upchurch 1991; Wang and
Abdel-Aty 2006), right-angle (Hall 1986; Hauer et al. 1988;
Kim et al. 2006; Persaud and Nguyen 1998; Poch and Mannering
1996; Shankar et al. 1995; Songchitruksa and Tarko 2006; Wang
and Abdel-Aty 2007), and sideswipe (Hall 1986; Hauer et al. 1988;
Kim et al. 2006, 2007; Persaud and Nguyen 1998). Hauer et al.
(1988), and Persaud and Nguyen (1998) found that the frequencies
of collisions were significantly associated with the traffic flows to
which the colliding vehicles belonged. The impacts of geometric
features on intersection safety were also investigated. For example,
median width was positively associated with left-turn crashes, pos-
sibly because wide medians impaired the sight distance for left-
turning vehicles (Joshua and Saka 1992; McCoy et al. 1992). They
also found that the traffic control and the operational features of
intersections could affect crash occurrence. For example, Roess
et al. (2003) found that installing a signal could cause an increase
in rear-end crashes due to cyclical stopping of the traffic flows. In
the research of Wang and Abdel-Aty (2007), the speed limit was
identified to be positively correlated with right-angle crashes, pos-
sibly because it was related to the running of red lights by drivers at
high-speed approaches.

The current study was designed to address some of the limita-
tions of the prior research on intersection crashes by identifying
predominant crash types and linking them to geometric design fea-
tures, traffic control and operational features, and traffic flows at the
approach level. Random effects models capable of accounting for
the correlation among observations were applied to deal with the
correlated approach data. To overcome the regression-to-the-mean
problem, a full Bayesian method was used for making crash pre-
dictions (Miranda-Moreno and Fu 2007; Lan and Persaud 2011;
Persaud et al. 2010). Hazardous intersection approaches were then
identified using estimations from crash type models. Based on the
identified risk factors that affect specific safety problems, several
countermeasures were proposed.

Data Preparation

This study required extensive efforts to collect datasets since all the
data was organized at the approach level. The data availability of
some variables (such as the left-turn flow and the right-turn flow for
approaches) restricted the sample selection. Therefore, one impor-
tant criterion of sampling was to select the intersections with all the
data obtainable. Compared with the four-legged intersections, the
traffic organization of three-legged intersections results in less
potential conflicts between vehicles and thus three-legged intersec-
tions tend to exhibit lower crash rates than four-legged intersections
(Wang and Abdel-Aty 2006; Xie et al. 2013). To get more accurate
estimated crash frequencies, only four-legged intersections were
included into the datasets for modeling. A sample of 177 four-
legged signalized intersections was selected from Orange and
Hillsborough counties in Central Florida for study. For the 708
approaches to these intersections, geometric design features, traffic
control and operational features, traffic flows, and crash frequencies,

by type of crash, for the years 2000 to 2005 were collected. Each
four-legged intersection was split into four approaches. Crashes
occurring on receiving lanes were rare and not considered in this
study. The approach-related variables were categorized as entering,
near-side crossing, far-side crossing, and opposing.

Approach Characteristics

Geometric design features for each intersection approach were
extracted using the high-resolution aerial and satellite imagery
provided by software Google Earth. The number of through lanes,
left-turn lanes, right-turn lanes, the types of left-turn lane offset
(negative, zero, or positive), the angle of intersecting roadways,
the presence of a median, and the direction of each intersection
roadway were identified.

Traffic control and operational features were retrieved by in-
specting signal plans of the county traffic engineering departments.
The type of left-turn control (permissive, compound, or protected),
whether the signal control was coordinated, the yellow and all-red
intervals, and the speed limits, were retrieved for each intersection
approach. Some intersections controlled by normal signals in the
day time transfer to a flashing mode operation during the late night,
and the use of a flashing operational mode was also obtained for
each intersection.

In Hillsborough County, the daily traffic volumes for each in-
tersection approach were available for only a single year over the
study period. Approach annual average daily traffic (AADT) was
calculated using the growth rates provided by the traffic depart-
ment. In Orange County, traffic volume for roadway segments
(in both approaching and departing directions) is counted annually
by the county traffic engineering department. The approach AADT
was obtained by averaging the roadway segment AADT for the
period 2000 to 2005. In both counties, the approach daily turning
movements (right-turning, left-turning, and through) were derived
from the approach AADT supplemented by the proportion of
approach turning movements at the peak hours. It is a limitation
of this study that actual daily turning movements could not be
obtained.

Since each approach will be taken as entering, near-side cross-
ing, far-side crossing, or opposing approach alternatively, the
descriptive statistics of variables for entering near-side crossing,
far-side crossing, and opposing approach are exactly the same.
Therefore, only the descriptive statistics of variables for entering
approaches are tabulated in Table 1.

Crash Data

The crash analysis reporting (CAR) system maintained by the
Florida Department of Transportation (FDOT) was used to retrieve
crashes occurring at the selected intersections for the 2000–2005
6-year period. Crashes were determined to be intersection related
based on a method of dynamic identification of the safety influence
area proposed by Wang et al. (2008). According to the safety
influence areas identified for each intersection, and the crash
location distances from the intersection centers, 1940 crashes
previously coded as not at intersection were reclassified as
intersection-related crashes. This resulted in a total of 12,318
intersection related crashes that we then linked to the 177 selected
signalized intersections.

Specific crash information such as the initial crash type
(e.g., rear-end and left-turn), vehicle movement (e.g., straight ahead
and making left turn) and travel direction (e.g., east and west)
of crash involved vehicles are available in the crash database
of FDOT. In this study, crashes were assigned to intersection
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approaches near the crash sites. Some records of initial crash type
were not consistent with the movement and traveling direction of
involved vehicles. By inspecting the crash reports through the state
crash report image retrieval system, 1,523 left-turn crashes that
were originally recorded as some other crash type, were determined
to be left-turn crashes since at least one of the involved vehicles was
turning left when the crash occurred. Also, 97 crashes were reclas-
sified as right-angle crashes according to the movement of the
crashed vehicles.

The conflict patterns preceding left-turn crashes often vary;
however, the two most frequent patterns of left-turn crashes account
for 86.6% of all the left-turn crashes, and these two patterns were
considered in this paper. For pattern 1, left-turning traffic collides
with the opposing through traffic, and for pattern 2, left-turning
traffic collides with near-side crossing through traffic. A total of
five prominent crash types were identified for modeling in this
study: rear-end, left-turn pattern 1, left-turn pattern 2, right-angle,
and sideswipe. The sum of these five crash types was 11,386, and
accounted for 92.4% of the total crashes. Fig. 2 below illustrates
each of these crash types.

Model Development

Methodology

Approaches to a given intersection are correlated with each other
because their traffic flows and signalized operations are interactive.
Therefore, if basic count models are used based on the assumption
of independent observations, biased estimations will result from
these correlations. To correct for correlated approach observations,
Bayesian random effects models were used in this study. The de-
viance information criterion (DIC), a widely accepted measure for
fitting and complexity of Bayesian models, was used to identify the
most appropriate models.

Random Effects Model
To account for dependency and heterogeneity attributable to the
unobserved characteristics among observations, random effects

models have been frequently been used in previous research
(Johansson 1996; Shankar et al. 1998; Xie et al. 2013). In this
study, because approaches at the same intersections are correlated
and likely to share an unobserved cause, a random intersection-
specific effect term was incorporated into each SPF. The
overdispersion of crash data was handled by using a negative
binomial model. The random effects model can be expressed as
follows:

yij ∼ Negbinðθij; rÞ ð1Þ

logðθijÞ ¼ βXij þ εi ð2Þ

where yij is the crash frequency of approach j at intersection i, θij is
the expectation of yij, and r is the overdispersion coefficient of neg-
ative binomial distribution. Xij is the explanatory variable associ-
ated with approach j at intersection i, and β is the vector of
regression parameters. The random effect across intersections is
εi, where εi ∼ Nð0;σ2

εÞ.

Full Bayesian Method
Schluter et al. (1997) were among the first to use the full Bayesian
method to estimate the posterior mean of a crash frequency and to
use it as the criterion for ranking hazardous sites. In the application
of the Bayesian method, a prior distribution of likely values was
generated and then combined with the observed data to create
a site-specific posterior distribution. The theoretical framework
for the full Bayesian method (Carlin and Louis 2009) can be
expressed as

πðθjyÞ ¼ LðyjθÞπðθÞR
LðyjθÞπðθÞdθ ð3Þ

where y is the vector of observed data, θ the vector of parameters
required for the likelihood function, LðyjθÞ the likelihood function,
πðθÞ the prior distribution of θ, ∫LðyjθÞπðθÞdθ the marginal dis-
tribution of observed data, and πðθjyÞ the posterior distribution
of θ given y.

Table 1. Descriptive Statistics of Approach-Level Variables

Variables Mean Minimum Maximum Standard deviation

Entering approach AADT (vehicles) 13,042.33 51 50,763 10,201.57
Entering approach through AADT (vehicles) 9,280.59 10 50,464 9,190.20
Entering approach left-turn AADT (vehicles) 2,075.08 10 13,005 2,148.97
Entering approach right-turn AADT (vehicles) 1,686.68 3 1,1653 1,717.87
Total number of lanes on entering approach 3.32 1 7 1.32
Number of through lanes on entering approach 1.76 1 5 0.81
Number of left-turn lanes on entering approach 1.06 0 2 0.52
Number of right-turn lanes on entering approach 0.50 0 2 0.51
Median on entering approach (1 if with median;
0 if without median)

0.53 0 1 0.50

Left-turn offset on entering approach (1 if having positive
offset; 0 if having no offset; −1 if having negative offset)

0.40 −1 1 0.69

Angle of intersecting approaches (degree) 90.12 36 144 13.05
Signal coordination (1 if coordinated; 0 if isolated) 0.38 0 1 0.49
Left-turn protection on entering approach (2 if protected;
1 if compound; 0 if permissive)

0.94 0 2 0.85

Yellow time for through movement on entering approach (s) 2.46 0 5.5 2.11
All-red time for through movement on entering approach (s) 1.67 0.5 5.1 0.65
Flashing operation (1 if with flashing; 0 if without flashing 0.08 0 1 0.27
Speed limit on entering approach (mph) 41.82 15 60 6.95
Pavement friction on entering approach 35.68 24.19 46.07 4.01
County (1 if Orange County; 0 if Hillsborough County) 0.36 0 1 0.48
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Fig. 2. Crash types classified by conflicting vehicle maneuvers: (a) rear-end; (b) left-turn pattern 1; (c) left-turn pattern 2; (d) right-angle; (e) sideswipe
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Deviance Information Criterion
The DIC is widely used as a Bayesian measure of model fitting and
complexity (Speigelhalter et al. 2003a). DIC is defined as

DIC ¼ DðθÞ þ pD ð4Þ

where DðθÞ is the Bayesian deviance of the estimated parameter θ
and DðθÞ denotes the posterior mean of DðθÞ. DðθÞ can be taken as
a measure of model fitting. pD is the effective number of param-
eters and indicates complexity of models. Models with smaller DIC
are preferred.

Modeling Results

Bayesian inference is usually implemented using a Markov chain
Monte Carlo (MCMC) algorithm (Gilks et al. 1995). Open source
software WinBUGS (Spiegelhalter et al. 2003b) was used to

calibrate the Bayesian models using MCMC. Without credible
prior information, uninformative priors were assumed for all regres-
sion coefficients with the Normal distributions (0, 105). The vari-
ance of the random effect and the overdispersion coefficient for the
negative binomial distribution were assumed with the inverse-
gamma distribution (10−3, 10−3).

The proposed random effects models were used to develop SPFs
for total, rear-end, left-turn pattern 1, left-turn pattern 2, right-angle,
and sideswipe crashes in the Bayesian framework. Negative bino-
mial models for various crash types were also calibrated as com-
parisons. As shown in Table 2, lower DIC values of the random
effects models indicate that they perform better than the negative
binomial models by including a random effect term, although it is
penalized by higher pD values that reflect the increasing complex-
ity of random effects models.

Posteriors summary and goodness of fit statistics for the six ran-
dom effects models are reported in Tables 3–5. Traffic volume was

Table 2. Model Comparisons using DIC

Crash type

Negative binomial models Random effects models

DðθÞ pD DIC DðθÞ pD DIC

Total crash 4,809.474 8.983 4,818.457 4,258.960 156.103 4,415.063
Rear-end 4,161.088 9.934 4,171.022 3,815.000 134.093 3,949.093
Left-turn pattern 1 2,889.461 8.987 2,898.448 2,689.300 109.062 2,798.362
Left-turn pattern 2 1,262.087 8.998 1,271.085 1,187.280 63.586 1,250.866
Right angle 2,070.913 7.962 2,078.875 1,907.140 99.629 2,006.769
Sideswipe 1,739.779 9.009 1,748.788 1,567.400 100.362 1,667.762

Table 3. Posterior Summary of Total and Rear-End Crash Models

Variables

Total crash Rear-end

Mean Standard deviation Mean Standard deviation

Intercept −1.853 0.2324 −4.378 0.5967
Logarithm of the traffic volume involveda 0.3957 0.0273 0.6542 0.0478
Number of through lanes on entering approach — — — —
Number of left-turn lanes on entering approach 0.1042 0.0522 — —
Number of right-turn lanes on entering approach 0.1855 0.0462 0.2514 0.0608
Number of through lanes on opposing approach — — — —
Median on entering approach With median — — — —

Without median — — — —
Signal coordination Yes — — 0.2426 0.0756

No — — 0 —
Left-turn protection on entering approach Protected 0.3648 0.0775 0.6937 0.0985

Compound 0.259 0.0682 0.3831 0.09
Permissive 0 — 0 —

Speed limit on entering approach 0.011 0.0037 — 0.0056
Speed limit on near-side crossing approach — — — —
Difference between the real value and the
standard yellow time

— — — —

Difference between the real value and the
standard all-red time

— — — —

Flashing operation With flashing — — — —
Without flashing — — — —

Pavement friction of entering approach — — −0.0156 0.0087
County Orange −0.3683 0.0953 −0.4225 0.102

Hillsborough 0 — 0 —
Dispersion 0.1203 0.0141 0.2319 0.0257
Random effect 0.3138 0.0438 0.2816 0.0464
Summary statistics Intersection number 177 177

Observation number 708 708
Crash number 12,318 7279

aLogarithm of traffic volumes on the entering approaches in the total crash model; logarithm of traffic volumes on the entering approaches in the rear-end crash
model.
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Table 4. Posterior Summary of Left-Turn Patterns 1 and 2 Crash Models

Variables

Left-turn pattern 1 Left-turn pattern 2

Mean Standard deviation Mean Standard deviation

Intercept −5.9730 0.5970 −6.3950 1.0020
Logarithm of the traffic volume involveda 0.2797 0.0361 0.3681 0.0483
Number of through lanes on entering approach 0.2053 0.0904 — —
Number of left-turn lanes on entering approach — — — —
Number of right-turn lanes on entering approach — — — —
Number of through lanes on opposing approach — — −0.6285 0.1482
Median on entering approach With median 0.3934 0.1455 −0.1549 0.0826

Without median 0 — 0 —
Signal coordination Yes — — — —

No — — — —
Left-turn protection on entering approach Protected −0.5397 0.1742 0.2882 0.1865

Compound 0.4366 0.1511 0.1940 0.1952
Permissive 0 — 0 —

Speed limit on entering approach 0.0438 0.0077 — —
Speed limit on near-side crossing approach — — 0.0177 0.0135
Difference between the real value and the standard yellow time — — — —
Difference between the real value and the standard all-red time — — — —
Flashing operation With flashing — — — —

Without flashing — — — —
Pavement friction of entering approach — — — —
County Orange −0.7686 0.1485 −0.4034 0.1731

Hillsborough 0 — 0 —
Dispersion 0.7083 0.0851 0.5690 0.1934
Random effect 0.4600 0.1020 0.3341 0.1408
Summary statistics Intersection number 177 177

Observation number 708 708
Crash number 2,059 393

aLogarithm of the product of the entering through and opposing left-turning traffic volumes in the left-turn pattern 1 crash model; logarithm of the product of
the entering left-turning and near-side crossing through traffic volumes in the left-turn pattern 2 crash model.

Table 5. Posterior Summary of Right-Angle and Sideswipe Crash Models

Variables

Right-angle Sideswipe

Mean Standard deviation Mean Standard deviation

Intercept −2.305 0.4603 −7.641 0.7139
Logarithm of the traffic volume involveda 0.1677 0.0287 0.6564 0.087
Number of through lanes on entering approach −0.097 0.0547 0.1972 0.0874
Number of left-turn lanes on entering approach — — 0.3827 0.1106
Number of right-turn lanes on entering approach — — 0.2684 0.1033
Number of through lanes on opposing approach — — — —
Median on entering approach With median — — — —

Without median — — — —
Signal coordination Yes — — — —

No — — — —
Left-turn protection on entering approach Protected — — 0.5367 0.1782

Compound — — 0.4652 0.16
Permissive — — 0 —

Speed limit on entering approach — — — —
Speed limit on near-side crossing approach — — — —
Difference between the real value and the standard yellow time −0.3867 0.1265 — —
Difference between the real value and the standard all-red time −0.1169 0.0774 — —
Flashing operation With flashing 0.5059 0.1942 — —

Without flashing 0 — — —
Pavement friction of entering approach — — — —
County Orange −0.5791 0.138 −0.229 0.1348

Hillsborough 0 — 0 —
Dispersion 0.1238 0.0657 0.064 0.0518
Random effect 0.2908 0.0681 0.3677 0.0879
Summary statistics Intersection number 177 177

Observation number 708 708
Crash number 848 807

aLogarithm of the product of the through traffic volumes on the entering and crossing approaches in the right-angle crash model; logarithm of traffic volumes
on the entering approaches in the sideswipe crash model.
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included as an explanatory variable in crash predictions, since it has
been confirmed that the frequencies of accidents are related to
conflicting traffic flows, and not to the sum of the entering flows
(Hauer et al. 1988). The forms of traffic volume included in these
models are listed in the note below each table.

The random effect variances (e.g., 0.2816 in the SPF for rear-
end crashes) were statistically significant and affirmed the presence
of between-intersection heterogeneity. The estimated dispersion
values (e.g., 0.2319 in the SPF for rear-end crashes) provided
strong evidence that crash data are overdispersed. This overdisper-
sion would result in the underestimation of the standard errors in
the Poisson model formulation.

Improvements to Hotspot Identification

In this section, hazardous intersection approaches were identified
based on posterior means of each crash type by the full Bayesian
method and were compared with approaches identified by the pre-
dicted crash totals.

Hotspot Identification Based on Crash Type Estimates

A direct diagnostics method proposed by Kononov (2002) was used
to examine whether a particular crash type was overrepresented
in an intersection approach. Instead of using observed data in the
original direct diagnostics method, Bayesian posterior estimations
were applied to make the determinations of crash type overrepre-
sentations. The advantage of using posterior estimations over raw
crash observations is that it is able to address the regression-to-
the-mean issue. The regression-to-the-mean is a statistical phe-
nomenon that makes natural variation in repeated observed data
(Barnett et al. 2004). Since crashes are rare and random events,
sites with high crash frequencies in one period can experience
lower crash frequencies subsequently even if no treatment is
implemented. Identifying hotspots by raw crash observance is
likely to confound the natural variation with the should-be crash
occurrence.

The following example shows the Bayesian posterior means of
left-turn pattern 1 and total crashes for approach #1 at intersection

#458 (denoted as #458-1) to be 15 and 30, respectively, while the
predicted average proportion for left-turn pattern 1 crashes is
17.0%. If we assume that each crash that occurred at approach
#458-1 as an independent Bernoulli trial, then the probability of
15 or more left-turn pattern 1 crashes out of 30 total crashes
can be calculated as follows:

PðX ≥ xjθ; nÞ ¼
Xn

i¼x

n!
ðn − iÞ!i! θ

ið1 − θÞn−i ð5Þ

PðX ≥ 15j0.170; 30Þ ¼
X30

i¼15

30!

ð30 − iÞ!i! 0.170
ið1 − 0.170Þ30−i

¼ 3.34 × 10−5 ð6Þ

As shown in Eq. (6), the probability of 15 or more left-turn
pattern 1 crashes out of 30 total crashes is extremely low at
3.34 × 10−5. Therefore a deficiency must be present in approach
#458-1 that increases the risk of left-turn pattern 1 crashes.

Table 6 below lists the top five hazardous approaches for each
crash type ranked by predicted crash frequencies. The direct diag-
nostics method mentioned above was used to check those top
ranked approaches. If P <¼ 0.05, it can be viewed as an evidence
of overrepresentation of that crash type. The results show that
approaches #4494-1, #4494-3, #506-3, #1443-3, and #506-1 are
overrepresented in rear-end crashes; approaches #474-1, #174-1,
#458-1, and #6215-3 have excessive left-turn pattern 1 crashes; ap-
proaches #6003-2, #1449-4, #3710-3, and #1461-4 have excessive
left-turn pattern 2 crashes; approaches #497-2, #497-4, #2333-2,
#2333-4, and #2333-3 have excessive right-angle crashes; and ap-
proaches #1454-3 and #1644-2 have excessive sideswipe crashes.

However, among those aforementioned approaches, none of the
approaches with excessive left-turn pattern 1, left-turn pattern 2,
right-angle, and sideswipe crashes were listed in the top five
approaches that had high expected crash totals. A number of ap-
proaches with problems such as approaches #474-1, #6003-2,
#497-2, which were respectively ranked first by estimations of
left-turn pattern 1, left-turn pattern 2, and right-angle crashes,

Table 6. Identify Hazardous Intersection Approaches Based on Individual Crash Type Estimates

Ranking criteria

Rank

First Second Third Fourth Fifth

Total crash
Approach ID 4494-1 4494-3 506-3 1443-3 4129-2
Predictions 125 104 86 74 69

Rear-end
Approach ID 4494-1 4494-3 506-3 1443-3 506-1
Predictions 103ð< 0.001Þ 78ð< 0.001Þ 78ð< 0.001) 64ð< 0.001Þ 54ð< 0.001Þ

Left-turn pattern 1
Approach ID 474-1 4494-3 174-1 458-1 6215-3
Predictions 33ð< 0.001Þ 18(0.489) 15(0.031) 15ð< 0.001Þ 13(0.001)

Left-turn pattern 2
Approach ID 6003-2 881-1 1449-4 3710-3 1461-4
Predictions 4(0.004) 4(0.054) 3ð< 0.001Þ 3ð< 0.001Þ 3ð< 0.001Þ

Right-angle
Approach ID 497-2 497-4 2333-2 2333-4 2333-3
Predictions 4(0.015) 4(0.002) 4(0.002) 4(0.002) 4(0.005)

Sideswipe
Approach ID 4494-1 4494-3 1454-3 1653-2 1644-2
Predictions 8(0.552) 7(0.501) 7(0.018) 6(0.138) 6(0.012)

Note: Approaches in italics are ranked as the top five by predicted crash totals. Approaches in bold are those with overrepresentation of specific crash types.
Numbers in parentheses indicate the probabilities obtained by the direct diagnostic method.
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and had overrepresentation of these types that had been previously
ignored because of their relatively few total crashes.

Comparisons of Ranked Hazardous Approaches

Comparisons of the ranks of hazardous approaches between pre-
dicted crash totals and numbers of each crash type are shown below
in Fig. 3. For each panel, the X-axis represents the rank in decreas-
ing order of predicted total crashes, and the Y-axis represents the
rank in decreasing order of estimations for each crash type. The
spread of points around the diagonal line shows the difference

in identifying hazardous approaches with a greater spread of points
indicating great difference. It can be seen that the ranking differ-
ence between predicted total crashes and predicted left-turn pattern
1 [Fig. 3(b)], left-turn pattern 2 [Fig 3(c)], and right-angle crashes
[Fig. 3(d)], is greater than that between predicted total crashes and
predicted rear-end [Fig. 3(a)], and sideswipe crashes [Fig. 3(e)].
According to FDOT summary of crash injury severity for each
crash type, around 14.3% of left-turn (patterns 1 and 2) crashes,
13.5% of right-angle crashes involve incapacitating and fatal inju-
ries, while the percentages of rear-end and sideswipe crashes which
caused incapacitating and fatal injuries are only 5.1% and 2.3%,
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Fig. 3. Comparisons of high-risk approach ranking between predicted crash total and each crash type: (a) rear-end versus crash total; (b) left-turn
pattern 1 versus crash total; (c) left-turn pattern 2 versus crash total; (d) right-angle versus crash total; (e) sideswipe versus crash total
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respectively. In this case, hotspot identification based on overall
crash totals (rather than types) screened out approaches with high
frequencies of rear-end and sideswipe crashes, and were more
likely to miss the approaches with more serious crash types such
as left-turn and right-angle. The method adopted in this study
reduces the likelihood of making this kind of error.

Improvements to Countermeasure Development

Crash type models at the approach level lead to an improved ability
to develop countermeasures in two ways. First, since risk factors
are different for different crash types, treatments can be aimed
at reducing those specific crash types that are causing the most
problems. Second, by modeling crash occurrence with approach-
related factors, specific deficiencies can be identified for each
intersection approach.

Treatments Aimed at Specific Crash Types

The quantified safety effects of geometric features, traffic control and
operational features, and traffic flows on specific crash types
were presented in Tables 3–5. A specific case to consider is one
where a single approach-related variable might have contrary
effects on the occurrence of different crash types. An example
would be left-turn protection. Compared with the permissive
phase, the protected phase reduces the left-turn pattern 1 crashes
(coefficient ¼ −0.5397), but is associatedwithmore left-turn pattern
2 (coefficient ¼ 0.2882), rear-end (coefficient ¼ 0.6937), sideswipe
(coefficient ¼ 0.5367), and total crashes (coefficient ¼ 0.3648).

In addition, the presence of a median increases the frequencies of
left-turn pattern 1 crashes (coefficient ¼ 0.3934), but is associated
with fewer left-turn pattern 2 crashes (coefficient ¼ −0.1549).
Furthermore, the number of through lanes on entering
approach has a negative association with right-angle crashes
(coefficient ¼ −0.0970), but a positive associationwith left-turn pat-
tern 1 (coefficient ¼ 0.2053), and sideswipe crashes (coefficient ¼
0.1972).

More specific and efficient treatments can be developed to im-
prove safety at intersections based on the identified factors that
affect the precise problem. For instance, if an intersection has
excessive left-turn pattern 1 crashes, but fewer rear-end crashes,
a protected phase would be recommended for left-turn protection
at this intersection. This example shows specifically how crash type
models can provide an improved ability to investigate the real
effects of risk factors for certain type of crashes and to help identify
effective countermeasures.

Approach-Specific Deficiencies

Crash expectations for each approach can be obtained from SPFs at
the approach level. These expectations can provide useful insights
when diagnosing specific safety problems and identifying relevant
deficiencies for each approach. Taking intersection #474 as an ex-
ample, according to Table 6 above, a problem of excessive left-turn
pattern 1 crashes is expected to occur at its eastbound approach
#474-1. Predictions of each of the various crash types were calcu-
lated for the #474 intersection’s four approaches, and the results are
shown below in Fig. 4.
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Fig. 4. Crash predictions for each approach of one hazardous intersection (intersection ID ¼ 474)
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Observe that for the eastbound approach, there are 33 left-turn
pattern 1 crashes expected and only 13 rear-end crashes expected.
If the left-turn protection in the eastbound approach is changed
from a permissive phase to a protected phase, according to the
coefficients in Tables 3 and 5, the left-turn pattern 1 crashes can
be expected to decrease by 41.7% (1-e−0.5397), i.e., from 33 to
19; the rear-end crashes are expected to increase by 100.1%
(e0.6937 − 1), i.e., from 13 to 26; and the sideswipe crashes are ex-
pected to increase by 71.0% (e0.5367 − 1), i.e., from 2 to 3. Con-
sidering the higher proportion of serious left-turn pattern 1
crashes than those of rear-end and sideswipe crashes, it is recom-
mended to change the left-turning protection phase.

For the northbound approach, however, the recommendation
would be to keep the permissive phase because the most predomi-
nant crash type is rear-end (10 rear-end crashes out of 20 total
crashes), and protected or compound phases would increase the
overall risk of crashes. These examples illustrate how approach-
level SPFs can provide specific suggestions for safety improve-
ments by identifying the geometric and traffic characteristics that
predict specific crash types for the approaches being considered.

Summary and Conclusions

The main focus of this study is to present a systematic approach that
integrates the procedures of hotspot identification and counter-
measure development based on approach-level crash type models.

A total of 177 four-legged signalized intersections were selected
from the Orange and Hillsborough counties in the Central Florida
area for study. Bayesian random effects models for five crash types
(i.e., rear-end, left-turn pattern 1, left-turn pattern 2, right angle,
sideswipe) and total crashes were developed at the approach level.
The correlations among approaches at the same intersection were
accounted for by incorporating a random intersection-specific ef-
fect term into each SPF.

A direct diagnostics method was used to examine whether there
was overrepresentation of certain crash types for the top ranked
intersection approaches. Approaches with specific problems were
then flagged, as a good complement to hotspots identified using
crash totals. In addition, comparisons of hazardous approach ranks
between predicted crash totals and frequencies of each crash type
using the full Bayesian method were conducted in this study. The
results showed that hotspot identification based on crash totals
tended to screen out approaches with high frequencies of rear-
end and sideswipe crashes, rather than the ones with more serious
crash types such as left turn and right angle.

Approach-level crash type models provide a powerful method
for quantifying the effects of risk factors. It was found that certain
variables (e.g., number of through lanes, median, and left-turn pro-
tection all on the entering approach) can have differential effects
on the occurrence of different crash types. This finding leads to
the recommendation that countermeasures specific to the crash type
be developed where overrepresentation of a particular crash type is
identified. In addition, approach-level SPFs should be used because
they improve the ability to diagnose specific safety problems com-
pared to an overall intersection-level model, as they are capable of
identifying the deficiencies with respect to geometric and traffic
characteristics for each approach.

In most previous studies, SPFs were developed for special pur-
poses such as estimation of crash frequencies, identification of
hazardous locations, and analysis of risk factors. This study adds
to the safety literature by presenting an integrated framework for
multiple purposes by developing more specific SPFs for crash types
at the approach level. Using the same SPFs as the basis of analysis,

procedures of hotspot identification and countermeasure develop-
ment in safety management can be efficiently coordinated. For
future research, more factors such as crash injury severity will
be considered to be incorporated into this safety framework.
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