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a b s t r a c t

Intersections in close spatial proximity along a corridor should be considered as correlated due to inter-
acted traffic flows as well as similar road design and environmental characteristics. It is critical to
incorporate this spatial correlation for assessing the true safety impacts of risk factors. In this paper,
several Bayesian models were developed to model the crash data from 170 signalized intersections in
the state of Florida. The safety impacts of risk factors such as geometric design features, traffic control,
and traffic flow characteristics were evaluated. The Poisson and Negative Binomial Bayesian models with
non-informative priors were fitted but the focus is to incorporate spatial correlations among intersections.
afety analysis
orridor
patial model
onditional autoregressive model

Two alternative models were proposed to capture this correlation: (1) a mixed effect model in which the
corridor-level correlation is incorporated through a corridor-specific random effect and (2) a conditional
autoregressive model in which the magnitude of correlations is determined by spatial distances among
intersections. The models were compared using the Deviance Information Criterion. The results indicate
that the Poisson spatial model provides the best model fitting. Analysis of the posterior distributions of
model parameters indicated that the size of intersection, the traffic conditions by turning movement, and

l phas
the coordination of signa

. Introduction

Signalized intersections are among the most dangerous loca-
ions of a roadway network due to the complex traffic conflicting

ovements and frequently changing traffic signals. In the United
tates, more than 2.8 million intersection-related crashes occurred
n the year 2000 and among those, 1.3 million crashes and 445,000
njuries occurred at signalized intersections (FHWA, 2005). Crashes
elated to signalized intersections also tend to be more severe:
0% of intersection-related fatalities occurred at signalized inter-
ections while only 10% of intersections are signalized (Rice, 2007).
mproving intersection safety has been considered as a top priority
y federal, state, and local agencies (AASHTO, 2005; FDOT, 2007).
here is an urgent need to investigate and improve traffic safety at
ignalized intersections.
One main goal of intersection safety studies is to identify high
isk factors among intersection geometric design features, traffic
ontrol and operational features, and traffic flow characteristics.

ang et al. (2006) have shown that the traffic volume per lane has
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e have significant impacts on intersection safety.
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a significant impact on safety. Furthermore, there is a significant
association between through/left-turning movements and the rear-
end, right-angle, and left-turn crashes (Wang and Abdel-Aty, 2007,
2008; Wang et al., 2008). Intersection geometric design features
(i.e., number of through lanes, right-turn lanes, left-turn lanes, etc.)
and traffic control and operational features (i.e., signal phase, speed
limit, etc.) were also found to have significant influence on crash
occurrence (Abdel-Aty and Wang, 2006; Poch and Mannering, 1996;
Wang et al., 2006, 2008; Wang and Abdel-Aty, 2007, 2008).

Generalized linear models (GLM), including Poisson and Nega-
tive Binomial (NB) regression models, are widely used to relate the
number of accidents to risk factors (Abdel-Aty and Radwan, 2000;
Greibe, 2003; Poch and Mannering, 1996). The assumption of inde-
pendent observations for ordinary GLM is often violated for traffic
safety data. This is especially true for intersections along a corridor.
Various mechanisms can lead to this dependency. First, adjacent
signalized intersections along a certain corridor will share a high
percentage of through-traffic. Therefore, the driving behavior and
driver characteristics for those intersections tend to be similar. Sec-
ond, signals within 0.5 mile of each other along a corridor would
be coordinated in most circumstances (Rodegerdts et al., 2004);

and this coordination in signals will promote platoon of vehicles
crossing intersections. The platoon of vehicles would lead to simi-
lar traffic flow patterns along intersections and thus similar crash
patterns. Finally, adjacent intersections along a corridor tend to
share similar land use and roadway design characteristics. For the

http://www.sciencedirect.com/science/journal/00014575
http://www.elsevier.com/locate/aap
mailto:feng.guo@vt.edu
mailto:wangxs@tongji.edu.cn
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dx.doi.org/10.1016/j.aap.2009.07.005
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Table 1
Summary of selected corridors and intersections.

County Corridor Direction Selected intersection node (with sequence) Total

Hillsborough County

56th St NS 1102, 1103, 1397, 1104, 1105, 1106, 1107, 1108 8
Florida Ave NS 1130, 1126 2
Fowler Ave WE 1101, 1120, 1121 3
Nebraska Ave NS 1143, 1144, 1152 3
SR 39 (North) NS 1356, 1377, 1381 3
SR 574 WE 1008, 1010, 1011, 1013, 1088, 1014, 1015, 1016, 1328, 1322, 1324, 1325, 1321, 1326 14
SR 580 WE 1348, 1190, 1189, 1188, 1184, 1181 6
SR 597 NS 1318, 1225, 1222, 1221, 1220, 1162, 1163, 1164, 1166 9
SR 60 WE 1083, 1027, 1028, 1031, 1086, 1033, 1034, 1036, 1037, 1038, 1039, 1040, 1367, 1385,

1366, 1422, 1382, 1384, 1380
20

SR 600 (East) WE 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1365, 1337 9
SR 600 (West) WE 1109, 1112, 1114 3
SR 674 WE 1309, 1289, 1394, 1388, 1386, 1371, 1387 7
SR 676 WE 1307, 1085, 1048 3
US 301 NS 1296, 1305, 1327, 1376, 1045, 1046, 1048, 1332, 1064, 1066, 1068, 1439, 1301 13
US 41 NS 1135, 1133 2
US 41 (South) NS 1370, 1307, 1362, 1375, 1369, 1302, 1288, 1378, 1309 9

Orange County

SR 15 NS 77, 18, 76 3
SR 423 WE 101, 173 2
SR 434 NS 337, 53, 242, 7, 6, 260, 3 7
SR 436 NS 14, 230, 29, 212, 68 5
SR 438 WE 211, 34, 218, 131, 217, 159, 232, 82, 185 9
SR 50 (East) WE 68, 63, 64, 57, 59, 58, 66, 237, 3, 36, 336, 417, 69, 360 14
SR 50 (West) WE 24, 386, 89, 181, 176, 35, 288, 124, 386, 344, 269, 134, 184, 183, 65, 67 16
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SR 551 NS 123, 64,
US 441 NS 395, 37

otal 25 170

bove reasons, it is expected that the safety of spatially proximate
ntersections is correlated instead of independent.

There is limited research considering the dependency among
ignalized intersections. To avoid the spatial correlation, Poch and
annering (1996) used a subset of intersections that were consid-

red to be independent. Abdel-Aty and Wang (2006) are among
he first to consider corridor-level correlations. The correlations for
76 signalized intersections from 41 corridors in the state of Florida
ere incorporated using the Generalized Estimating Equations

GEE) approach (Abdel-Aty and Wang, 2006; Wang and Abdel-Aty,
006). The analyses for both total crashes and rear-end crashes
onfirmed the presence of significant correlation for successive
ntersections along a corridor. The main limitation of these studies
s that the GEE model assumes the same correlation matrix for dif-
erent corridors. However, the signal spacing, i.e., distance between
djacent signalized intersections, is unlikely to be identical among
orridors. This will violate the assumption for the GEE model.

The Bayesian statistical method has been adopted in many traf-
c safety studies. The Bayesian approach treats model parameters
s random and the inference is based on the posterior distributions,
hich combine information from both observed data and prior dis-

ributions. This information infusion is one major advantage of the
ayesian approach. The prior can be either objective (e.g., non-

nformative prior and Jeffrey’s prior) or elicited from historical data
r expert opinions. Hauer et al. (2002) used the Empirical Bayes (EB)
ethod to increase the precision of estimates for small samples and

o correct for the regression-to-the-mean bias. A number of studies
ave shown the advantages of using full Bayesian models, especially
ierarchical models, in modeling traffic safety data (Carriquiry and
awlovich, 2008; Miranda-Moreno and Fu, 2007). In recent years,
ayesian spatial models have been applied for traffic safety stud-

es under different contexts (Guero-Valverde and Jovanis, 2006;
acNab, 2004; Miaou et al., 2003; Quddus, 2008; Song et al., 2006).
Ignoring the spatial correlation would lead to invalid statisti-
al inference. In many cases, assuming independency will cause
nderestimation of standard errors for model parameters (Wang et
l., 2006), thus overly optimistic significant levels. The focus of this
aper is to model signalized intersection safety and incorporate the
8, 122 5
2

dependency among intersections along corridors in a full Bayesian
framework. The dependency can be incorporated through either
appropriate likelihood or prior structure. Two levels of correlation
were considered. At the first level, intersections on the same corri-
dor are assumed to be equally correlated regardless of the relative
spatial distances among them. At the second level, the magnitude
of the correlation among intersections within a corridor is affected
by the spatial distance among intersections. The remainder of the
paper is structured as follows: the intersection data are introduced
in Section 2; five full Bayesian models with alternative treatments
for the corridor-level correlations are introduced in Section 3; appli-
cation and comparison are presented in Section 4; and Section 5
summarizes the main results and their implications.

2. Data

A total of 170 four-legged signalized intersections along 25
principle and minor arterials were selected from Orange and Hills-
borough counties in the Central Florida area. Generally three-legged
intersections tend to exhibit lower crash rates than four-legged
intersections (Abdel-Aty and Wang, 2006). Since the safety mech-
anisms for three- and four-legged intersections are different, only
four-legged signalized intersections were included in this study.

The Geographic Information System (GIS) and Google Earth
(Google Inc., 2008) were used to visualize and explore spatial data
to assist in signalized intersection selection. The geocoding proce-
dure in ArcGIS was used to locate intersections on a GIS base map
and identify the projected map coordinates of each intersection. The
coordinates were used to calculate the spatial distance among inter-
sections, which is the basis for evaluating spatial correlations. Each
intersection is located on a primary corridor. The primary corridor is
defined as a multi-lane highway with high speed limit and serving
relatively long trips between major points. The number of intersec-

tions on each corridor varies from 2 to 19 as shown in Table 1. The
road network and geocoded intersections for the two counties are
presented in Fig. 1a and b.

The safety of intersections was measured by the total num-
ber of crashes. Crashes that occurred at the selected intersections
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or 6 years (2000–2005) were retrieved from the Crash Anal-
sis Reporting system maintained by the Florida Department
f Transportation (FDOT) Safety Office. The total number of
rashes for an intersection was calculated by combining both at-
ntersection and influenced-by-intersection crashes. The crashes
hat are influenced-by-intersection are those that occurred in
oad segments close to an intersection (the safety influence area).
nstead of using an arbitrary fixed-length influence area (e.g.,

50 feet), a dynamic safety influence areas (DSIA) was adopted

n this study (Wang et al., 2008). The basic premise of DSIA is
hat the upstream safety influence area is mainly affected by the
ttributes of that approach, i.e., approach through volume, speed
imit, jurisdiction, number and length of right-turn lanes, and

Fig. 1. (a) Road network and geocoded signalized intersections for Hillsborough Coun
Prevention 42 (2010) 84–92

approach left-turn protection. The DISA incorporates those factors
and has been demonstrated to be appropriate in intersection safety
studies (Wang et al., 2008).

Detailed information was collected regarding intersection geo-
metric design features, traffic control and operational features, and
traffic flow characteristics. The geometric design features include
number of through lanes, number of left-turn lanes/exclusive left-
turn lanes, presence of median, presence of exclusive right-turn

lanes, types of left-turn lane offset (negative, zero, or positive
offset), direction of each intersection roadway, and angle of inter-
secting roadways.

Traffic control and operational features were collected by
inspecting signal plans provided by county traffic engineering

ty. (b) Road network and geocoded signalized intersections for Orange County.
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Table 2
Summary of independent variables.

Variable name Description Summary statistics

Exposurea Sum of total entering traffic for the entire intersection Mean: 51.9; std: 25.5
County 0 for Orange County; 1 for Hillsborough County 60 intersections in Orange County; 110

intersections in Hillsborough County
ADTMJtha ADT per lane through-traffic on major road, standardized Mean: 6.9; std: 3.0b

ADTMJlta ADT per lane left-turn traffic on major road, standardized Mean: 1.5; std: 1.0b

ADTMNtha ADT per lane through-traffic on minor road, standardized Mean: 2.0; std: 2.2b

ADTMNlta ADT per lane left-turn traffic on minor road, standardized Mean: 2.5; std: 3.3b

CoorMJ Signal coordination along corridor: 0 for isolated intersection; 1 for
coordinated intersection

Isolated: 50 intersections; coordinated: 120
intersections

IntSize Intersection size: small or medium intersections have less than 19
lanes (coded as 0); large intersections have equal or more than 19 lanes
(coded as 1)

Small and medium size: 155 intersections;

Large size: 15 intersections
Landuse Intersection surrounding land use types, 1 for urban and 0 for rural Urban: 97; rural: 73
SpeedMJ Speed limit along major road, 1 for ≥45mph, 0 for <45mph <45 mph: 25 intersections;

≥45 mph: 145 intersections
SpeedMN Speed limit along minor road, 1 for ≥45mph, 0 for <45mph <45mph: 104; >45mph: 66
C
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orridor Unique identification number for each corridor

a The unit for ADT is thousand-vehicle per day.
b The summary statistics for ADT per lane is before standardization.

epartments. A number of variables were extracted including speed
imit, types of left-turn control (permissive, compound or pro-
ected), key factors for signal phases (i.e., yellow time and all-red
ime for through and left-turn—if protected—movements), and sig-
al coordination information. The average daily traffic (ADT) for
ach intersection approach was also collected including the total
raffic, through-traffic, and left-turn traffic ADTs on major and

inor roads.
Although a relative large number of independent variables were

ollected, only a few were actually included in final models as the
ollected variables often provide redundant information and can be
ighly correlated. For example, the correlation coefficient between
hrough-traffic and total traffic on major roads is as high as 0.96.
his multicollinearity will lead to identifiability problems of model
oefficients and highly inflated variance estimation. The selection of
ndependent variables thus follows three principles: (1) the variable
hould have a sound engineering interpretation; (2) the variable
hould represent different aspects of properties of an intersection;
nd (3) there should be a weak/moderate correlation among the
elected variables.

Traffic volume has a significant effect on safety and can be con-
idered as both exposure measure and risk factor (Qin et al., 2004).
herefore, the total traffic volume from all approaches was included
o indicate the overall exposure level. Besides exposure informa-
ion, the intensity of turning traffic movement is directly related
o traffic level of service and thus would affect intersection safety
Wang et al., in press). The intensity can be conveniently measured
y through-traffic and left-turn ADT per lane on major and minor

anes. Those four variables were standardized (subtracted by their
eans and divided by the standard deviation) to make them compa-

able. The standardized variables show moderate correlation with
he total ADT (ranging from 0.18 to 0.60) and can be used in the
ame model.

Based on the above analysis, 12 variables representing various
spects of intersection characteristics were selected as listed in
able 2.

. Model structure
A full Bayesian framework was used in this study. The inference
s based on the posterior distribution of model parameters:

(�|D) = L(D|�)�(�)
m(D)

, (1)
25 corridors were selected

where � is the vector of parameters, D is the set of observed data,
�(�|D) is the posterior distribution, L(D|�) is the likelihood function,
�(�) is prior distribution of �, and m(D) is the marginal distribution
of data D. The key to a Bayesian model is the selection of appropriate
likelihood function and prior distributions. The posterior distri-
bution �(�|D) combines information from both the data (through
likelihood function) and prior. As will be illustrated later, the corre-
lation among intersections can also be incorporated through either
likelihood function or prior distribution. Five alternative models
were developed with difference treatment for corridor-level spatial
correlation.

3.1. Poisson and NB models

The likelihood function L(D|�) is the distribution function of data
D given parameter �. Similar to most traffic safety studies, the Pois-
son and NB regression models were used as the base models. To
develop the notation, let Yij represent the number of crashes at
intersection j on corridor i (i = 1,. . .,I, j = 1,. . .,ni, ni is the total num-
ber of intersections on corridor i) and Y be the vector of Yij. The
Poisson/NB model assumes

yij∼Poisson(�ij),

or

yij∼Negbin(�ij, k),

where �ij is the expectation of yij and k is an overdispersion
coefficient. For the Poisson model, the variance is equal to the
expectation: var(yij) =�ij. Overdispersion, which refers to the situa-
tion where the variance is greater than that allowed by the Poisson
model, is commonly presented in safety studies (Liu and Dey, 2007;
Mitra and Washington, 2006). In a NB regression model, the expec-
tation of number of crashes is the same as Poisson model but allows
larger variance through parameter k: var(yij) = �ij + �2

ij
/k.

In a GLM framework, the expectation of yij is considered to be
related to a set of independent variables. For both Poisson and NB
models, a logarithm link function can be used to connect the expec-
tation with covariates,
log(�ij) = �log(Eij) + ij, (2)

where Eij is the total traffic volume and exp( ij) is the crash rate
per unit of exposure. It is easy to see that the expected number of
crashes at intersection j on corridor i is:�ij = E�

ij
e ij . It is well known
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hat the relationship between the expected number of crashes and
raffic volume is nonlinear (Qin et al., 2004). In Eq. (2), � is an expo-
ure coefficient and E�

ij
is the actual exposure measure. The crash

ate is connected with covariates through a linear relationship:

ij = X ′
ijˇ, (3)

here Xij is the covariate matrix and � is the vector of regression
arameters.

A prior distribution is assigned for each parameter to represent a
riori information without consulting the observed data. The priors
an be elicited from either historical data or expert opinions. When
o such information is available, vague/non-informative priors can
e used which are typical distributions with large variance. The
rst two proposed models assume Poisson and NB likelihood and
se vague priors for the model parameters. Specifically, the prior
istributions are as follows:

∼N(0,105) (4)

∼Np(0,105I) (5)

here N and Np represent normal and p-dimensional normal dis-
ribution respectively; I is the identity matrix. For NB model, a
og-normal prior was used for the dispersion parameter k:

og(k)∼N(0,0.01).

This completes the model setup for the simple Poisson and NB
ull Bayesian models. The corridor-level correlation was not consid-
red in these two models.

.2. Mixed effect model

Both Poisson and NB models assume that data are independent,
ut they can be extended to accommodate correlated data. There
re potentially three levels of correlation for intersection safety. On
he first level, crashes that occurred within the same county are

ore “similar” comparing to those in other counties. Ideally a ran-
om effect should be used to model this county level correlation.
ince only two counties are available in this study, a random effect
annot be estimated satisfactorily and a fixed effect dummy vari-
ble was used instead. The second level of correlation is based on
he tenet that intersections within the same corridor are correlated
ith each other. This effect is represented by a random effect bi,
here I = 1,. . .,I is the index for corridor. The last level of correlation

s a micro-level spatial correlation. Within a corridor, the intersec-
ions close to each other are expected to be more similar than those
ar apart. This spatial correlation was incorporated into the model
hrough a conditional autoregressive (CAR) prior.

Based on the above arguments, two extensions to the basic
oisson/NB models were proposed: a mixed effect model that

ncorporates within corridor correlation and a CAR model that
ncorporates the spatial correlations. The mixed effect model setup
s as follows:

ij = X′
ijˇ + bi, (6)

here X′
ij is a vector of covariates associated with intersection j on

orridor i, � is a vector of regression parameters as specified in Eq.
3); and bi is a corridor-specific random effect. It is assumed that bi’s
ollow independent and identically distributed normal distribution

∼N(0,1/� ),
i b

here �b is the precision parameter. In this mixed effect model,
ntersections on the same corridor are correlated through bi and
hose on different corridors are independent of each other. To com-
lete the Bayesian setup, a vague gamma prior was assigned to �b,
Prevention 42 (2010) 84–92

i.e., �b ∼ Gamma(0.001,0.001). The rest of model setup is identical
to the simple models as introduced in Section 3.1 (Eqs. (2) and (3)).

3.3. Spatial CAR model

The mixed effect model described above treats intersections
on the same corridor equally regardless of the distance between
intersections. However, it is believed that there exists a micro-level
spatial correlation: intersections in close spatial proximity tend
to be more similar than those far apart. This micro-level correla-
tion represents a second order variation that cannot be sufficiently
explained by covariates. Fig. 2 shows the residuals of an ordinary
NB regression for the selected intersections in Hillsborough County.
The larger circles in the plot indicate larger residuals. As can be seen,
there are certain levels of micro-level spatial correlation depending
on the distance between intersections. To quantitatively evaluate
the spatial autocorrelation the Moran’s I index was used as shown
in the following equation:

I =
(

n∑
i

∑
jwij

)(∑
i

∑
jwij(xi − x̄)(xj − x̄)∑

i(xi − x̄)
2

)
(7)

where i and j are indexes for spatial units which are the intersections
in this analysis; x is the variable to be examined; x̄ is the mean of
x; and wij is the spatial weight between intersection i and j. The
weights represent the spatial relationship between intersections.
When there is no spatial autocorrelation, the expected value of I is
E[I] = 1/(n − 1).

For this study, there were 170 intersections so the expected value
is −1/169 = −0.00059. The calculated Moran’s I for the residuals of
the NB model is 0.15 and p value is 0.01, which indicates significant
positive spatial autocorrelation. The residuals represents the spatial
variance cannot be explained by the independent variables. This
result confirms that spatially proximate intersections tend to have
similar crash patterns and more sophisticated models are needed
to incorporate this spatial autocorrelation.

A conditional autoregressive model was adopted to incorporate
the spatial autocorrelation. A random effect term�ij was introduced
to capture the variation associated with intersection ij. This extends
the crash rate model in Eq. (3) to the following form:

 ij = X′
ijˇ + �ij. (8)

A CAR prior was assigned to �ij to incorporate the spatial cor-
relations among intersections, which reflects the expectation that
for two spatially close intersections indexed by ij and ij′, �ij and
�ij′ will be of similar magnitude. The formulation in Eq. (8) applies
to the main structure of both Poisson and NB models. The spatial
relationship among intersections can be represented by a proxim-
ity matrix W with entry wij,i′j′ indicating the spatial relationship
between intersections ij and i′j′. Thewij,i′j′ was defined as a function
of the distance between intersections:

wij,i′j′ =
(
c(dij,i′j′ ) if ij /= i′j′
0 if ij = i′j′ , (9)

where dij,i′j′ is the distance between intersections ij and i′j′. Since
intersections on different corridors were treated as independent,
wij,i′j′ is set to 0 when i /= i′. Here c(dij,i′j′ ) is a decreasing function
of the “distance” dij so that intersections closer to each other are
more similar than those far apart. In this analysis, a commonly used
inverse distance function was adopted, i.e., c(dij,i′j′ ) = 1/dij,i′j′ .
The conditional distribution of CAR prior has the following form:

�ij|�(−ij)∼N

⎛
⎝∑
j′ /= j

wij′,ij
wi+

�ij′ ,
1

�cwi+

⎞
⎠ , (10)
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It should be noted that the effective number of parameters for the
Poisson model is 12, which exactly equals the number of coefficients
used in the model. With the cost of one extra parameter (13 vs. 12),
the NB model provides significantly better model fitting than the
Poisson model. This result again implies that the overdispersion

Table 3
Model comparison using DIC.

Models D̄ pD DIC
Fig. 2. Residuals of NB model for

here�(−ij) is the collection of�i′j′ ,∀i′j′ /= ij,�c is a precision param-
ter, and wi+ =

∑ni
j′=1wij,ij′ . The joint prior distribution for �ij’s is

(�) ∝ exp

⎧⎨
⎩−�c

2

∑
i′j′ /= ij

ωilj,i′j′ (�ij − �i′j′ )2

⎫⎬
⎭ ,

here �(�) is the joint distribution of � = {�ij: i = 1,. . .I, j = 1,. . .,ii},
represents that the likelihood function is proportional (up to a

onstant) to the right-hand side of the equation. Note that this is a
air-wise difference model and is not a proper distribution and the
ij’s are non-identifiable. As usual in such models, the constraint
�ij = 0 is sufficient to guarantee the identifiability.
As has been well known, the NB distribution is actually a com-

osite Poisson distribution with a non-constant mean parameter
Liu and Dey, 2007). When a random effects model is assigned to
ach observation, it is expected that the overdispersion can be suffi-
iently modeled by a Poisson model. Therefore, both NB and Poisson
AR models were tested in the application.

. Modeling results

.1. Model comparison

All together, five full Bayesian models were considered with dif-
erent complexity (1) a fixed effect Poisson regression model; (2)

fixed effect NB model; (3) a mixed effect NB model with inter-
ections on the same corridor as a cluster; (4) a CAR NB model
or corridor effect incorporating the relative distance among inter-
ections, and (5) a CAR Poisson model. A model comparison was

onducted to evaluate the fitting of models and identify the model
hat provides the best fitting for the data and representation for the
nderlying stochastic process.

As there is no closed-form solution for the proposed model,
imulation-based MCMC was used to sample from the posterior
sections in Hillsborough County.

distributions. During the fitting of the CAR model, it was observed
that the coefficients for county dummy variable, the intercept, and
the spatial effect �ij were confounded and convergence could not
be reached. Therefore, the county effect was excluded from the two
CAR models.

The model comparison was conducted using Deviance Infor-
mation Criterion (DIC) (Spiegelhalter et al., 2002), which assesses
models on the marginal space and is defined as

DIC = D̄+ pD,

where D is the Bayesian deviance, D = −2log(p(y|�)) + 2log(f(y)) and
D̄ is the posterior mean of D. D̄ is a measure of fitting of the model
and pD is effective number of parameters. A smaller value of DIC
is preferred and greater than 5 difference in DIC value indicates a
substantial difference. The results of the DIC are listed in Table 3.

As can be seen, there is a general trend that for a more complex
model, a better model fitting can be achieved as indicated by smaller
posterior deviance D̄. At the same time the model complexity, as
indicated by the effective number of parameters, will increase. The
Poisson model has the largest DIC value of 3209. A fixed effect NB
model provides a substantial improvement with a DIC value of 1630.
Poisson model 3197 12 3209
NB model 1617 13 1630
NB mixed effect model 1606 20 1626
NB CAR model 1577 51 1628
Poisson CAR model 1200 178 1378
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annot be sufficiently modeled by the Poisson model but can be
ccommodated by the NB model.

The NB model with the corridor-specific random effect model
s more complex with an effective number of parameters of 20 but
mproved modeling fitting as indicated by a smaller D̄ compared to
he fixed effect NB model. Overall, the NB mixed effect model shows
marginal improvement over the fixed effect NB model (1626 vs.

630). The DIC of the NB CAR model is between the simple NB
odel and the mixed effect NB and there is no significant difference

etween them.

The Poisson CAR model shows considerable complexity with 178

ffective number of parameters and substantially improved model
tting with D̄ of 1200. The overall DIC evaluation is significantly
etter than the rest of the models. This is not a surprise result as the

able 4
osterior summary of Bayesian model fitting.

actors Poisson model NB model NB

ntercept 3.51a 3.332 3.3
0.04b 0.171 0.1
(3.43,3.59)c (3.01,3.7) (2.

xposure 0.44 0.290 0.2
0.03 0.121 0.1
(0.38,0.51) (0.05,0.52) (−

ounty 0.40 0.441 0.4
0.02 0.090 0.1
(0.35,0.44) (0.26,0.61) (0.

DTMJth −0.14 −0.130 −0
0.01 0.059 0.0
(−0.17,−0.113) (−0.24,−0.009) (−

DTMJlt 0.11 0.145 0.1
0.01 0.057 0.0
(0.08,0.13) (0.04,0.26) (0.

DTMNth 0.10 0.136 0.1
0.01 0.056 0.0
(0.08,0.12) (0.03,0.25) (0.

DTMNlt −0.09 −0.060 −0
0.01 0.044 0.0
(−0.12,−0.06) (−0.14,0.02) (−

oorMJ 0.17 0.252 0.2
0.03 0.113 0.1
(0.12,0.23) (0.03,0.47) (0.

ntsize 0.30 0.391 0.3
0.03 0.149 0.1
(0.24,0.36) (0.11,0.68) (0.

anduse 0.09 0.107 0.1
0.02 0.093 0.0
(0.04,0.13) (−0.08,0.29) (−

peedMJ 0.05 0.116 0.0
0.03 0.118 0.1
(0,0.1) (−0.12,0.35) (−

peedMN 0.28 0.316 0.2
0.02 0.094 0.0
(0.24,0.33) (0.13,0.5) (0.

B coefficient 4.45 4.7
0.54 0.6
(3.46,5.59) (3.

andom effect 16
34
(11

AR effects

a Posterior means.
b Posterior standard deviations.
c 95% credible intervals.
Prevention 42 (2010) 84–92

NB distribution is essentially a compound Poisson distribution with
random parameters. In the CAR model, the random effect �ij can
accommodate the overdispersion as sufficiently as the NB model.
Based on these results, the Poisson CAR model is considered the
preferred model.

The DIC was used to compare the performance of the alternative
models. The Bayesian model validity, i.e., if the model sufficiently
explained the variation from the data, was checked by the Bayesian
residuals and there is no evidence of lack of fit. The NB simple
Bayesian model was compared with the classical non-Bayesian NB

model and they basically provided identical results. The model
validity check for the non-Bayesian NB model using deviance show
good model fitting. As the CAR models performed better than the
NB simple model, the model fitting is considered adequate.

mixed effect model NB CAR model Poisson CAR model

4 3.60 3.50
8 0.17 0.18
98,3.68) (3.26,3.94) (3.12,3.84)

4 0.14 ∼=0
2 0.16 0.18
0.01,0.48) (−0.18,0.43) (−0.35,0.37)

2
1
19,0.64)

.14 −0.22 −0.18
6 0.07 0.07

0.25,−0.023) (−0.35,−0.081) (−0.3,−0.046)

5 0.15 0.20
6 0.06 0.06
04,0.27) (0.03,0.26) (0.09,0.31)

4 0.13 0.18
6 0.06 0.06
03,0.25) (0.01,0.26) (0.06,0.31)

.05 0.01 0.03
5 0.06 0.07

0.14,0.04) (−0.11,0.14) (−0.11,0.16)

9 0.45 0.43
2 0.15 0.18
05,0.53) (0.16,0.73) (0.08,0.79)

8 0.40 0.51
5 0.16 0.15
09,0.67) (0.1,0.72) (0.21,0.81)

0 0.02 0.01
9 0.13 0.15

0.09,0.29) (−0.24,0.27) (−0.29,0.31)

9 0.03 0.09
2 0.13 0.14
0.14,0.32) (−0.23,0.29) (−0.19,0.36)

9 0.24* 0.19
9 0.11 0.11

11,0.48) (0.04,0.45) (−0.03,0.4)

4 5.771
2 1.146
61,6.05) (4.08,8.55)

5.90
6.40
.13,1030)

16.8 0.79
16.21 0.11
(2.54,62.77) (0.58,1.04)
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.2. Variable estimation and interpretation

The model fitting was conducted using MCMC simulation and
he posterior distributions were constructed from the simulation
utput. The posterior summary from the MCMC output for all the
ve models is shown in Table 4, which includes the posterior mean,
osterior standard deviation, and 95% credible interval (CI). The
5% CI, which represents the interval within which lie 90% of the
ossible values of the quantity of interest, was used to evaluate
hether a parameter is significant: when the 95% CI includes zero,

he corresponding factor is not significant at the 95% level and vice
ersa.

The posterior statistics of the simple Poisson and NB mod-
ls were compared with the classical non-Bayesian models and
hey are essentially identical. These results illustrate one advan-
age of the Bayesian approach: for most classical methods, the
ayesian alternative can provide similar results with vague (non-

nformative) priors.
The standard deviations tend to increase for more sophisticated

odels. This is especially true when compared to the simple Pois-
on model in which every parameter is statistically significant (CI
oes not include zero). With the increased dispersion from com-
lex model, several parameters become non-significant which is
xpected. As discussed in Section 1, ignoring overdispersion and
patial correlations among observed data will lead to overly opti-
istic and invalid statistical inference.

The simple NB and mixed effect NB models provide very similar
esults. The mean of the posterior of the precision parameter of the
andom effect is 166, which corresponds to a very small variance
1/166) comparing to the values of other regression coefficients.
his implies that the difference among the corridors is not sub-
tantial. Therefore, it is not surprising to observe similar parameter
stimations as well as similar DIC values.

Comparing the two CAR models, the posterior distributions of
arameters for the Poisson CAR model show larger variance. The
ajor difference is in the estimation of the CAR model precision

arameters. The Poisson model provides a rather large variance
1/0.79) when compared to that of the NB CAR model (1/16.8). This
s an expected result since the NB model contains an extra overdis-
ersion parameter k. For the NB model, the variation from the data

s explained by the combination of parameter k and the CAR preci-
ion parameter. In the Poisson model, the overdispersion can only
e accommodated by the CAR precision parameter, which naturally
hows larger variation than the CAR precision parameter in the NB
AR model. This result confirms the well-known fact that the NB
an be generated by a random effect Poisson model and implies that
he random effect Poisson model can be valuable in modeling the
afety data.

Three out of the four standardized ADT per lane variables are
dentified to be significant in both CAR models. The through-traffic
er lane on major road has a negative impact on the crash rate
ith a value of −0.18. This coefficient is the logarithm of multi-

licative effect for one unit increase of an independent variable
n crash rate as determined by Eqs. (2) and (3). Specifically, for
ne standardized unit of increase in major through-traffic (3000
ehicles per lane, i.e., one standard deviation), the expected crash
ate as measured by the number of crashes per thousand vehicles
ill drop by a multiplicative factor of exp(−0.18) = 0.83. That is for

wo intersections with identical conditions for all other factors, the
rash rate for the one with 3000 more through-vehicles per lane
n major road is 0.83 time of the crash rate for the other. This is

n expected result from an engineering point of view as the major
hrough-traffic has less conflicts with the turning traffic because
f signal setting and the nature of traffic movement. The left-turn
DT per lane on major roads showed a significant result: with one
nit increase (1000 vehicles per day) the crash rate will increase
Prevention 42 (2010) 84–92 91

by a factor of exp(0.2) = 1.22. Similarly, with one unit increase for
through-traffic per lane on minor roads (equivalent to 2200 vehicles
per day), the crash rate will increase by a factor of exp(0.18) = 1.2. The
exposure parameter� for total ADT is relatively small and not signif-
icant for both CAR models. To explore the possible causes, a model
including only total ADT was fitted and the � was significant. This
result indicates that the correlation between the total ADT and four
ADT per lane variables is the potential reason for non-significance
�.

Another interesting result is that coordinated intersections are
more unsafe than the isolated ones with an increased crash rate by
a factor of exp(0.43) = 1.53. That is 53% more crashes per thousand
vehicles are likely to happen on coordinated intersection if all other
variables are kept constant. Spatially proximate intersections along
a corridor would be coordinated in most circumstances (Rodegerdts
et al., 2004). There is a possibility that the travel speed is higher for
coordinated intersections because of the green wave, i.e., vehicle
travels through several intersections without stop. Another possi-
ble reason is that the relative short distance between coordinated
intersections could lead to more traffic interactions among those
interactions thus more crashes. For both reasons, the signal coordi-
nation could have been applied on a specific group of intersection
that could be more dangerous than the isolated ones. Therefore, it
is more a consequence than the cause. This phenomenon is known
as the endogeneity problem and Kim and Washington (2006) have
tackled the problem using a limited information maximum like-
lihood method. The incorporation of this approach in a Bayesian
framework will be worthy of future exploration.

Larger intersections (greater than 19 lanes) are more danger-
ous than smaller intersections. The crash rate is exp(0.51) = 1.66
times higher for larger intersections than the smaller or medium
size intersections. That is 66% more crashes per thousand vehicles
could occur on larger intersections if flow and all other variables
are kept constant. This result is consistent with the findings from
Porter and England (2000) and Wang et al. (2006). The land use
types and speed limit on both major and minor roads did not show
significant impact on intersection safety.

5. Summary and discussion

The number of crashes for multiple intersections on a same
corridor should not be considered as independent because of the
similar traffic flow patterns, signal control, as well as geographic
and design features. In this paper, the correlations of intersections
on a corridor were studied at two levels. First, the corridor-level
effect was modeled using a shared random effect. This mixed effect
model treats all intersections on the same corridor with equal level
of correlation. Second, two spatial CAR models were introduced to
reflect the tenet that intersections in closer proximity on the same
corridor have higher correlation levels than those far apart. The CAR
models advance the mixed effect model by taking distance-related
micro-level spatial correlation into consideration.

The analyses were conducted in a full Bayesian framework. The
flexibility of the Bayesian method allows sophisticated models, such
as CAR models, to be constructed. The inference is based on the
posterior distribution from the MCMC simulation. Five alternative
models including ordinary Poisson and NB models, mixed effect
models, and spatial models were compared using the DIC criterion.
Following conclusions were reached through model comparison.
1. Consistent with many traffic safety studies, the NB model is supe-
rior to the Poisson model due to overdispersion.

2. Mixed effect NB model improved model fitting over the simple
NB model.
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. The NB spatial CAR model provides similar results as the mixed
NB model.

. The Poisson CAR model outperforms all the alternative models
as evaluated by the DIC criterion.

The model comparison results indicate that models incorpo-
ated spatial correlations are superior to the ordinary GLM. This
mplies that the spatial models provide a better representation of
he stochastic processes underneath the observed safety data. From
n engineering point of view, the spatial models will produce valid
tatistical inference as reflected in the estimation of the regres-
ion coefficients and the credible intervals. As can be seen from
he comparison of the posterior inference, the parameters for the
patial model show larger variance than non-spatial models. One
xplanation is that the spatial correlation will reduce the actually
ffective sample size thus leads to larger variance. This is analog
o the well-known overdispersion in Poisson regression models,
hich can be accommodated by NB models. The Poisson model

ends to provide smaller variance, which is not valid in the pres-
nce of overdispersion. Similarly, ignoring spatial correlation for
he spatially correlated intersections will lead to biased inference
or model parameters and incorrect conclusions.

The detailed information collected for the 170 signalized inter-
ections provides a unique opportunity for evaluating factors that
re associated with high crash frequencies. The results provide
nsight into the causation of intersection safety and valuable infor-

ation for traffic management and improvement. The following
onclusions were reached by examining the model output.

1. Traffic conditions as measured by the standardized ADT per lane
by turning movement on the major and minor roads have a sig-
nificant impact on the safety of signalized intersections.

. Intersection size is closely related to intersection safety. In
general, larger intersections are more dangerous than smaller
intersections.

. Signal coordination shows negative impact on safety. However,
it is considered as a consequence of self-selection mechanism in
which dangerous intersections are more likely to be coordinated.

There are several possible future developments for this research.
he current paper used aggregated traffic count from six years and
natural extension is to use a spatial-temporal model to incorpo-

ate the time correlations for consecutive years. The level of corridor
orrelation can be evaluated quantitatively. The performance of the
patial model is closed related to the proximity function (Eq. (8)). An
nverse function was conveniently chosen but it will be of interest to
nvestigate the performance of alternative functions, e.g., exponen-
ial function. Furthermore, to consider the endogeneity problem in
Bayesian work is also the direction worth further investigation.
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